Research Targets Secret ‘Sulfate Code’ That Grants Bad Tau Protein Entry to Cells

Research Targets Secret ‘Sulfate Code’ That Grants Bad Tau Protein Entry to Cells
The hallmark Alzheimer’s disease protein tau requires a specific “sulfate code” to enter cells and alter normal proteins, according to a new study. Also, the identification of enzymes involved in the cellular uptake of corrupted proteins could lead to new therapies for neurodegenerative diseases, researchers say. The research, “Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau versus α-synuclein and β-amyloid aggregates,” was published in The Journal of Biological Chemistry. Both Alzheimer's and Parkinson’s are characterized by the formation of protein clumps in the brain. In Alzheimer’s, plaques mainly composed of misfolded beta-amyloid proteins form outside the cells, while a modified form (called hyperphosphorylated) of the protein tau forms intracellular tangles. In turn, patients with Parkinson’s typically exhibit Lewy bodies primarily composed of a protein known as alpha-synuclein. These protein aggregates induce normal proteins to also misfold and clump together. Cell-to-cell propagation of aggregate “seeds” is regarded as a key mediator of progression of neurodegenerative diseases. Scientists from UT Southwestern Medical Center, in Dallas, Texas, previously reported that, to enter cells and form new aggregates, the disease-associated proteins tau and alpha-synuclein bind to heparan sulfate proteoglycan (HSPG), a sugar-
Subscribe or to access all post and page content.