Molecular Mechanism Responsible for Synapse Loss in Alzheimer’s Disease Revealed

Molecular Mechanism Responsible for Synapse Loss in Alzheimer’s Disease Revealed
Researchers from the UNSW School of Biotechnology and Biomolecular Sciences and School of Medical Sciences and the Neuroscience Research Australia have uncovered a new molecular mechanism responsible for the loss of synapses, a key event in the early pathogenesis of Alzheimer’s disease. The research paper, entitled “Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer’s disease,” was published in Nature Communications. Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the presence of extracellular deposits of amyloid protein and early loss of synapses, an event seen as crucial in the loss of memory and cognitive impairment that are characteristic of the disease. Synapses are structures that allow communication through electrical and chemical signals between nerve cells and are therefore essential to proper neuronal function, thought, speech, voluntary and involuntary actions. The integrity and development of synaptic structures and contacts is maintained by cell adhesion molecules, responsible for connecting synaptic membranes and regulating their plasticity in the adult brain. The research team led by Dr. Vladimir Sytnyk studied one of these proteins, the neural cell adhesion molecule 2 (NCAM2). Through analysis of post-mortem brain tissues from AD patients and healthy controls, the researchers found this protein to be enriched in the synapses of healthy hippocampus, while the levels of NCAM2 were significantly reduced in hippocampal synapses in AD brain tissues. Using a mouse model, the scientists also
Subscribe or to access all post and page content.